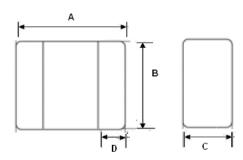
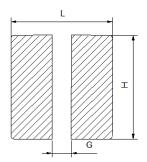
CONTENTS

- 1. Part No. Expression
- 2. Configuration & Dimension
- 3. Material List
- 4. General Specifications
- 5. Electrical Characteristics
- 6. Characteristics Curves
- 7. Soldering and Mounting
- 8. Packaging Information

1. Part No. Expression

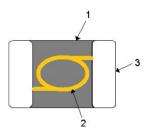

<u>L 2 5 2 0 1 0 F W R 2 4 M</u>


(a) (b) (c) (d) (e)

- (a) Series Code
- (b) Dimension Code
- (c) Material Code

- (d) Inductance Code
- (e) Tolerance Code

2. Configuration & Dimensions: (Unit: mm)



Recommended PCB Layout

А	В	С	D	L	G	Н
2.5±0.2	2.0±0.2	1.0 max	0.5±0.3	2.8 Ref	1.2 Ref	2.3 Ref

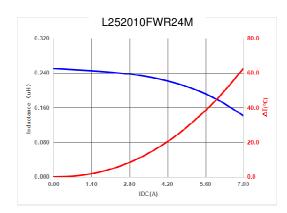
3. Material List

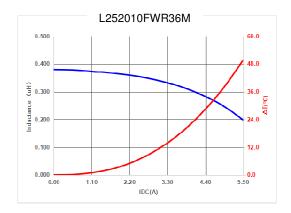
No.	Composition part	Material name
1	Alloy Body	Alloy Powder
2	Circuit-Copper	Copper Wire
3	Terminal	Silver paste

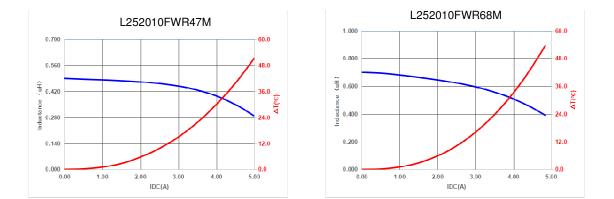
4. General Specifications

- (a) Operating Temp. : -40°C to +125°C (including self-temperature rise).
- (b) Storage Temp. : -40°C to +125°C (on board).
- (c) Irms : Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C.
- (d) Isat : Saturation Current (Isat) will cause L0 to drop approximately 30%.
- (e) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°C
 - ii) Humidity: 60% RH

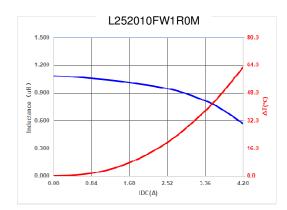
NOTE: Specifications subject to change without notice. Please check our website for latest information.

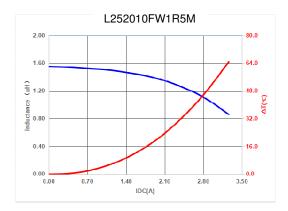

P4

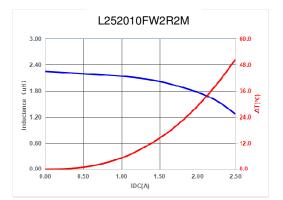

Power Inductor – L252010FW Series

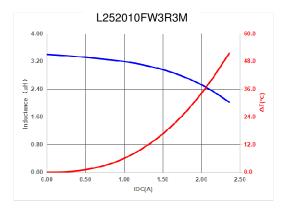

5. Electrical Characteristics

Part Number	Inductance	Test Frequency	l rms (A)	l sat (A)	DCR (m Ω)	
r un Number	(uH)	(Hz)			typ.	max.
L252010FWR24M	0.24±20%	1M/1V	5.7	6.3	18	22
L252010FWR36M	0.36±20%	1M/1V	4.7	4.9	23	28
L252010FWR47M	0.47±20%	1M/1V	4.4	4.5	28	34
L252010FWR68M	0.68±20%	1M/1V	4.2	4.3	34	41
L252010FWR82M	0.82±20%	1M/1V	3.8	4.0	40	48
L252010FW1R0M	1.00±20%	1M/1V	3.4	3.7	52	62
L252010FW1R5M	1.50±20%	1M/1V	2.6	2.9	82	98
L252010FW2R2M	2.20±20%	1M/1V	2.2	2.3	105	126
L252010FW3R3M	3.30±20%	1M/1V	2.0	2.1	130	156


6. Characteristics Curves







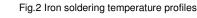
Power Inductor - L252010FW Series

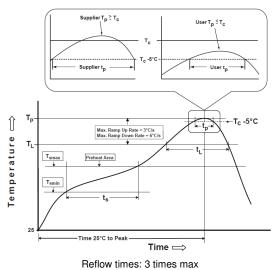
7. Soldering and Mounting

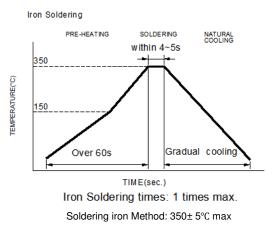
Mildly activated rosin fluxes are preferred. The terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

7-1 Soldering Re-flow

Recommended temperature profiles for lead free re-flow soldering in Figure 1. Table 1.1&1.2


(J-STD-020E)


7-2 Soldering Iron


Products attachment with soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Fig 2). Note:

- a) Preheat circuit and products to 150°C.
- b) 355°C tip temperature (Max).
- c) Never contact the ceramic with the iron tip.
- d) 1.0mm tip diameter (Max).
- e) Use a 20 Watt soldering iron with tip diameter of 1.0mm.
- f) Limit soldering time to 4~5 secs.

Power Inductor – L252010FW Series

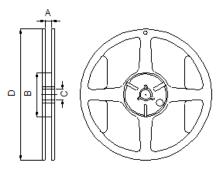
Table (1.1): Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat -Temperature Min(T _{smin})	150°C
-Temperature Max(T _{smax}) -Time(t _s)from(T _{smin} to T _{smax})	200°C 60-120seconds
Ramp-up rate(T _L to T _p)	3°C/second max.
Liquidus temperature(T_L) Time(t_L)maintained above T_L	217°C 60-150 seconds
Classification temperature(T_c)	See Table (1.2)
$Time(t_p)$ at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate(T_p to T_L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, Tc: the classification temperature.

For user (customer) $\boldsymbol{T}\boldsymbol{p}$ should be equal to or less than $\boldsymbol{T}\boldsymbol{c}\boldsymbol{.}$

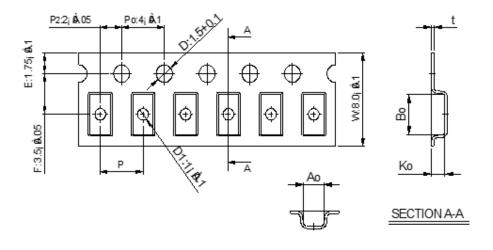
* Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm ³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E $\ensuremath{\,^\circ}$

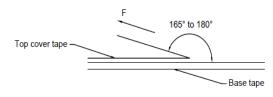
8. Packaging Information


8-1 Reel Dimension

7"x8mm

Туре	A(mm)	B(mm)	C(mm)	D(mm)
7"x8mm	9.0±0.5	60±2	13.5±0.5	178±2

8-2 Tape Dimension



Size	Bo(mm)	Ao(mm)	Ko(mm)	P(mm)	t(mm)
252010	2.90±0.1	2.30±0.1	1.15±0.1	4.0±0.1	0.23±0.05

8-3 Packaging Quantity

Chip Size	252010
Chip/Reel	3000

8-4 Tearing Off Force

The force for tearing off cover tape is 10 to 100 grams in the arrow direction under the following conditions.

Tearing Speed mm	Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)
300±10%	5~35	45~85	860~1060

NOTE: Specifications subject to change without notice. Please check our website for latest information.

SUPERWORLD ELECTRONICS (S) PTE LTD 西普爾電子(新)私营有限公司

Application Notice:

- 1. Storage Conditions:
 - To maintain the solderability of terminal electrodes:
 - a) Recommended products should be used within 12 months from the time of delivery.
 - b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation:

- a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- b) The use of tweezers or vacuum pick up is strongly recommended for individual components.
- c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

