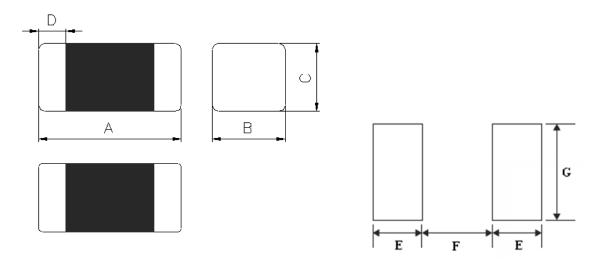
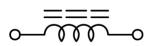
1. Part No. Expression

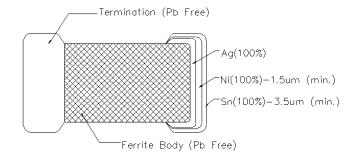

Z 1 P Z 1 0 0 - R P - 1 0

(a)(b)(c) (d) (e)(f) (g)

- (a) Series Code
- (b) Dimension Code
- (c) Material Code
- (d) Impedance Code


- (e) Packaging Code
- (f) Current Code
- (g) Internal Code

2. Configuration & Dimensions (Unit: mm)



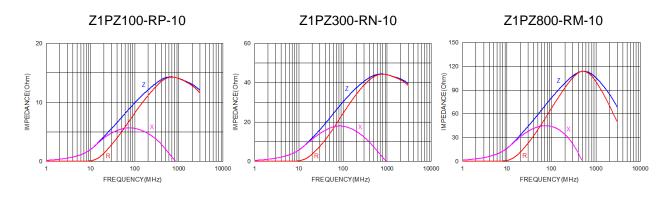
A(mm)	B(mm)	C(mm)	D(mm)	E(mm)	F(mm)	G(mm)
1.00±0.10	0.50±0.10	0.50±0.10	0.25±0.10	0.50 Ref	0.40 Ref	0.60 Ref

3. Schematic

4. Material List

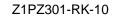
5. General Specification

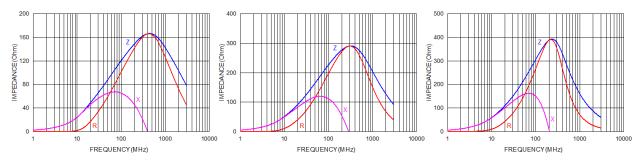
- (a) Operating Temp.: -55°C to +125°C (including self-temperature rise)
- (b) Storage Temp.: -55°C to +125°C (on board)
- (c) Irms: Based on temperature rise ΔT 40°C Max at rated current $\geq 1A$
- (d) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°C
 - ii) Humidity: 60% RH


6. Electrical Characteristics

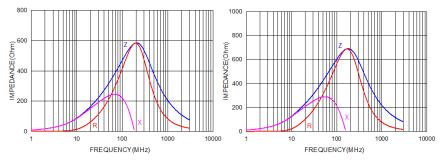
Part Number	Impedance (Ω)	Test Frequency	DC Resistance (Ω)	Rated Current (mA)
i art Nambol	±25%	(MHz)	Max	Max
Z1PZ100-RP-10	10	100	0.018	4000
Z1PZ300-RN-10	30	100	0.022	3000
Z1PZ800-RM-10	80	100	0.038	2300
Z1PZ121-RL-10	120	100	0.050	2000
Z1PZ221-RK-10	220	100	0.095	1500
Z1PZ301-RK-10	300	100	0.150	1200
Z1PZ471-RK-10	470	100	0.180	1100
Z1PZ601-RJ-10	600	100	0.200	1000

SUPERWORLD ELECTRONICS (S) PTE LTD 西普爾電子(新)私营有限公司


P3


7. Characteristics Curve

Z1PZ121-RL-10


Z1PZ221-RK-10

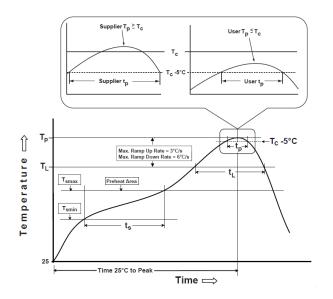
Z1PZ471-RK-10

Z1PZ601-RJ-10

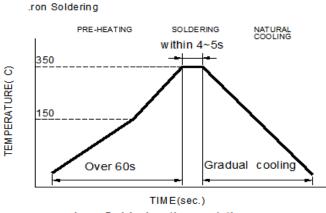
8. Soldering

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1 IR Soldering Reflow


Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2 Iron Reflow


Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- a) Preheat circuit and products to 150°C.
- b) 350°C tip temperature (Max.)
- c) Never contact the ceramic with the iron tip
- d) 1.0mm tip diameter (Max.)
- e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- f) Limit soldering time to 4~5 sec.

Reflow times: 3 times Max Figure 1: IR Soldering Reflow

Iron Soldering times: 1 times max.

Soldering iron method: 350± 5°C Max Figure 2: Iron soldering temperature profiles

NOTE: Specifications subject to change without notice. Please check our website for latest information.

Proprietary and Confidential Document of Superworld SUPERWORLD ELECTRONICS (S) PTE LTD 西普爾電子 (新) 私营有限公司

Ρ	5
	-

Table (1.1): Reflow Profiles	
Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t _s) from (T _{smin} to T _{smax})	60-120seconds
Ramp-up rate (T∟to T _p)	3°C/second max.
Liquidus temperature (TL)	217°C
Time (t∟) maintained above T∟	60-150 seconds
Classification temperature (T _c)	See Table (1.2)
Time (t_p) at Tc- 5°C (Tp should be equal to or less than Tc.)	< 30 seconds
Ramp-down rate (T_p to T_L)	6°C /second max.

Table (1.1): Reflow Profiles

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

For user (customer) **Tp** should be equal to or less than **Tc**.

	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm ³ >2000
	<1.6mm	260°C	260°C	260°C
PB-Free Assembly	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

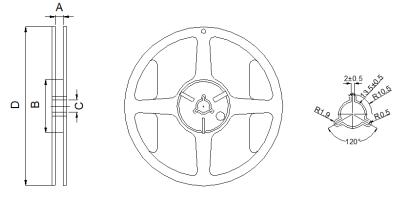
Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

Reflow is referred to standard IPC/JEDEC J-STD-020E.

8-3 Soldering Volume

Time 25°C to peak temperature

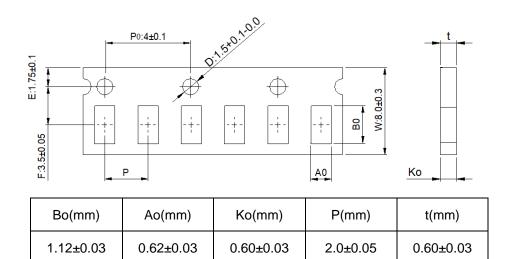
Accordingly increasing the solder volume, the mechanical stress to product is also increased. Exceeding solder volume may cause the failure of mechanical or electrical performance. Solder shall be used not to be exceeded as shown in the Figure below. Minimum fillet height = soldering thickness + 25% product height.


SUPERWORLD ELECTRONICS (S) PTE LTD 西普爾電子(新)私营有限公司

NOTE: Specifications subject to change without notice. Please check our website for latest information.

8 minutes max.

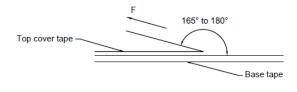
9. Packaging Information


9-1 Reel Dimension

7"x8mm

Туре	A(mm)	B(mm)	C(mm)	D(mm)
7"x8mm	9.0±0.5	60±2	13.5±0.5	178±2

9-2 Reel Dimension/ 8mm


SUPERWORLD ELECTRONICS (S) PTE LTD 西普爾電子(新)私营有限公司

Ρ7

9-3 Packaging Quantity

Chip / Reel	10,000	
Inner box	50,000	
Middle box	250,000	
Carton	500,000	

9-4 Tearing Off Force

The force for tearing off cover tape is 15 to 60 grams in the arrow direction under the following conditions.

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- a) Recommended products should be used within 12 months from the time of delivery.
- b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- b) Vacuum pick up is strongly recommended for individual components.
- c) Bulk handling should ensure that abrasion and mechanical shock are minimized

