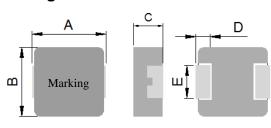
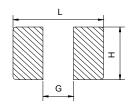
1. Part No. Expression:


PICQ0415 HPR47 MF


(a) (b) (c)

- a) Series Code
- e) Tolerance Code

- (d) (e)(f)
- b) Dimension Code
- f) RoHS Compliant
- c) Type Code
- d) Inductance Code

2. Configuration & Dimensions:

Recommended PC Board Pattern

Note:

- 1. The above PCB layout is for reference only.
- 2. Solder paste thickness of 0.12mm and above is recommended.
- Marking: Inductance 3.

Unit: mm

	Α	В	С	D	Е	L	G	Н
4.	45±0.25	4.06±0.25	1.30±0.2	0.76±0.3	2.00±0.2	5.20 Ref.	2.20 Ref.	2.30 Ref.

3. Schematic:

4. Material List:

- (a) Core
- (b) Wire
- (c) Terminal
- (d) Ink
- (e) Paint

5. General Specification:

(a) Reliability test for this part meets AEC-Q200 standard

(b) Operating Temp.: -55°C to +125°C(including self-temperature rise)

(c) Storage Temp.: -55°C to +125°C (on board)

(d) Humidity Range. : 85 ± 3% RH

(e) Heat Rated Current (Irms) will cause the coil temperature rise approximately Δt of 40°C

(f) Saturation Current (Isat) will cause L0 to drop approximately 30%.

(g) Part Temperature (Ambient+Temp. Rise): Should not exceed 125°C under worst case operating conditions.

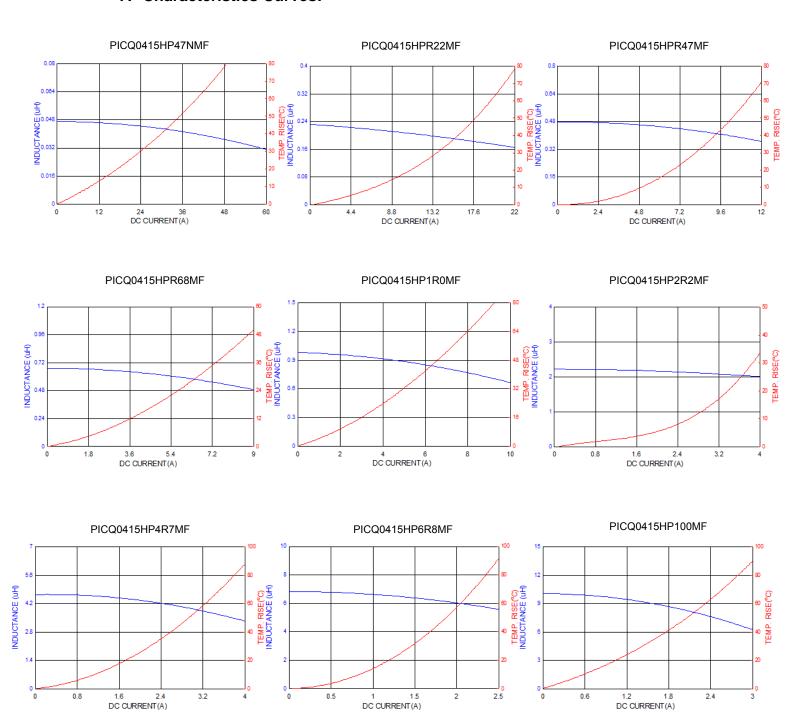
(h) Storage condition (component in its packaging)

i) Temperature: Less than 40°C

ii) Humidity: 60% RH

6. Electrical Characteristics:

Part Number	Inductance L0 (uH) @ 0 A	Test Frequency, L	I rms (A) Typ.	I sat (A) Typ.	DCR(mΩ) Typ.@25℃	DCR(mΩ) Max.@25°C
PICQ0415HP47NMF	0.047	100KHz/1.0V	20.5	48.0	2.1	2.5
PICQ0415HPR22MF	0.22	100KHz/1.0V	10.0	20.0	6.5	7.8
PICQ0415HPR47MF	0.47	100KHz/1.0V	8.0	11.0	15.0	19.0
PICQ0415HPR68MF	0.68	100KHz/1.0V	6.5	8.5	19.0	21.5
PICQ0415HP1R0MF	1.00	100KHz/1.0V	5.0	7.0	34.0	40.0
PICQ0415HP2R2MF	2.20	100KHz/1.0V	3.2	4.0	63.0	72.0
PICQ0415HP4R7MF	4.70	100KHz/1.0V	2.2	2.8	120	140
PICQ0415HP6R8MF	6.80	100KHz/1.0V	1.7	2.3	230	276
PICQ0415HP100MF	10.0	100KHz/1.0V	1.5	1.9	345	400


Tolerance code : $Y = \pm 30\%$; $M = \pm 20\%$

Notes:

1) Isat Typ. and Irms Typ. value is derived based from accounting the upper limit tolerance into the inductance value.

7. Characteristics Curves:

8. Soldering:

Mildly activated rosin fluxes are preferred. The minimum amount of solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. Our terminations are suitable for all re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air.

8-1 Solder Re-flow:

Recommended temperature profiles for re-flow soldering in Figure 1.

8-2 Soldering Iron (Figure 2):

Products attachment with soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended.

Note:

- a) Preheat circuit and products to 150°C.
- b) 355°C tip temperature (Max.)
- c) Never contact the ceramic with the iron tip
- d) 1.0mm tip diameter (Max.)
- e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- f) Limit soldering time to 4~5 secs.

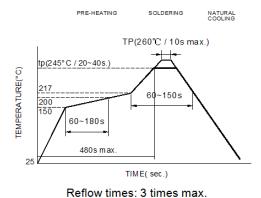
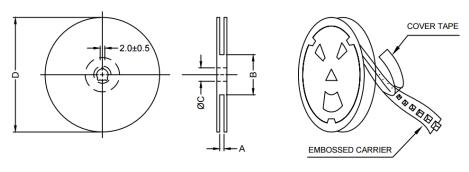
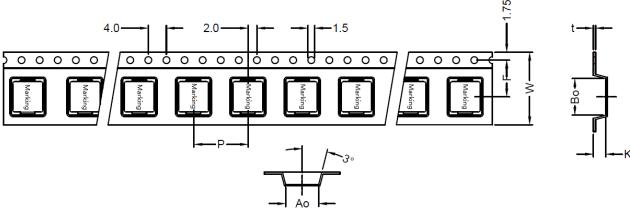


Fig.1



Iron Soldering times: 1 times max.

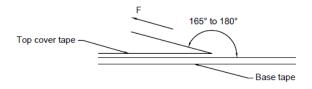
Fig.2


9. Packaging Information:

9-1 Reel Dimension

Туре	A(mm)	B(mm)	C(mm)	D(mm)
13"x12mm	12.4+2/-0	100±2	13.0+0.5/-0.2	330

9-2 Tape Dimension


Series	Size	Bo(mm)	Ao(mm)	Ko(mm)	P(mm)	W(mm)	F(mm)	t(mm)
PICQ	0415	5.0±0.1	4.4±0.1	1.8±0.1	8.0±0.1	12±0.3	5.5±0.1	0.35±0.05

9-3 Packaging Quantity

PICQ	0415	
Chip / Reel	3,500	
Inner box	7,000	
Carton	28,000	

9-4 Tearing Off Force

The force for tearing off cover tape is 10 to 130 grams in the arrow direction under the following conditions

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed mm/min
5~35	45~85	860~1060	300

Application Notice:

1. Storage Conditions:

To maintain the solderability of terminal electrodes:

- a) Recommended products should be used within 12 months from the time of delivery.
- b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation:

- a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- b) Vacuum pick up is strongly recommended for individual components.
- c) Bulk handling should ensure that abrasion and mechanical shock are minimized.