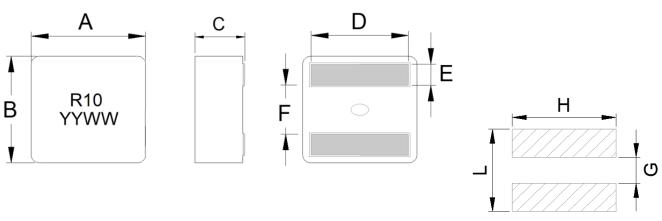
1. Part No. Expression

<u>PIF0402 A R10 M N</u>


(a) (b) (c) (d) (e) (f)

Series Code (a)

(c)

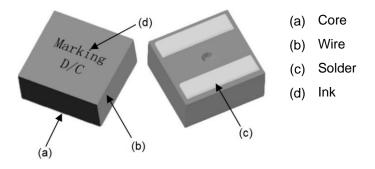
- (b) **Dimension Code** Material Code
- Inductance Code (d)
- **Tolerance Code** (e)
- Special Code (f)

2. Configuration & Dimensions (Unit: mm)

Recommended PCB Layout

1. The above PCB layout reference only. Note:

- 2. Recommend solder paste thickness at 0.12 mm and above.
- 3. Marking: Top= Inductance Code, Bottom=YYWW (Year/World week)


А	В	С	D	E
4.10±0.20	4.10±0.20	1.90±0.20	3.40±0.30	0.88±0.20
F	L	G	Н	-
1.60±0.25	3.40 Ref	1.40 Ref	3.80 Ref	-

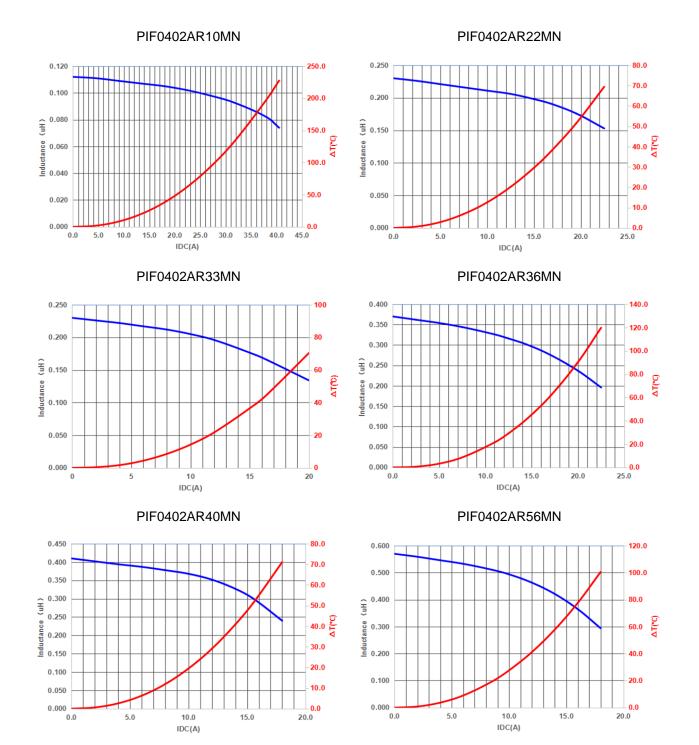
NOTE: Specifications subject to change without notice. Please check our website for latest information.

P0

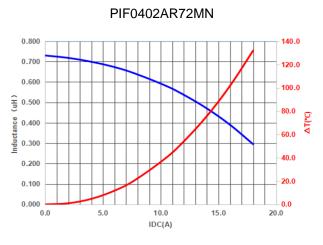
3. Material List

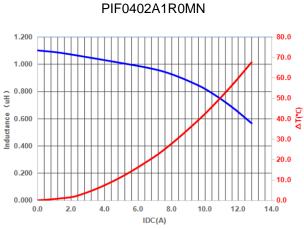
4. General Specifications

- (a) Operating Temp.: -40°C to +125°C (including self-temperature rise)
- (b) Storage Temp.: -40°C to +125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise approximately Δt of 20°C & 40°C (see following table).
- (e) Saturation Current (Isat) will cause inductance L0 to drop approximately 30%.
- (f) Part Temperature (Ambient + Temp. Rise): Should not exceed 125°C under worst case operating conditions.
- (g) Rated Operating Voltage. :
 - i) (across inductor) 15V Ref. (1.5uH and below).
 - ii) (across inductor) 40V Ref. (1.2uH and above)
- (h) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°C
 - ii) Humidity: Less than 60% RH


5. Electrical Characteristics

Part Number	Inductance (uH) @0A		ns Typ		at A)	DCR (mΩ)		Q (Min)
	±20%	@20°C	@40°C	Тур	Max	Тур	Max	(10111)
PIF0402AR10MN	0.10	13.5	18.0	38.0	33.0	2.2	2.42	5
PIF0402AR22MN	0.22	13.0	16.8	19.5	18.8	4.1	4.6	8
PIF0402AR33MN	0.33	12.0	15.5	18.0	16.5	5.0	5.5	8
PIF0402AR36MN	0.36	11.0	14.5	17.0	15.0	5.6	6.3	8
PIF0402AR40MN	0.40	10.0	14.0	15.5	13.5	6.9	7.73	8
PIF0402AR56MN	0.56	8.5	12.0	14.0	12.6	8.4	9.30	8
PIF0402AR72MN	0.72	7.6	10.5	12.0	10.6	10.4	11.6	12
PIF0402A1R0MN	1.00	6.8	9.6	9.6	8.8	13.3	14.6	12
PIF0402A1R2MN	1.20	6.6	9.0	9.0	7.8	16.2	17.9	12
PIF0402A1R5MN	1.50	5.8	7.6	8.0	7.4	21.0	23.5	12
PIF0402A1R8MN	1.80	5.2	7.0	7.5	7.0	25.0	28.0	12


Test frequency: 0.1V/100kHz



6. Characteristics Curve

PIF0402A1R5MN

1.80

1.60

1.40

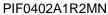
1.20

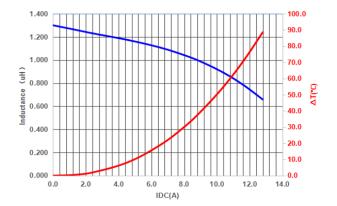
1.00

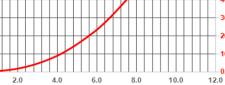
0.80

0.60

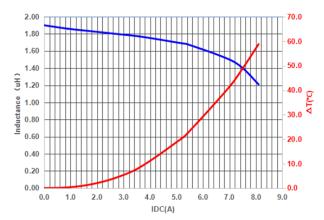
0.40

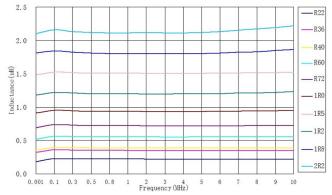

0.20


0.00


0.0

(HI)


Inductance


PIF0402A1R8MN

PIF0402A Series

IDC(A)

4.0

NOTE: Specifications subject to change without notice. Please check our website for latest information.

90.0

80.0

70.0

60.0

50.0 2

40.0

30.0

20.0

10.0

0.0

ł

P4

7. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

7-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

7-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

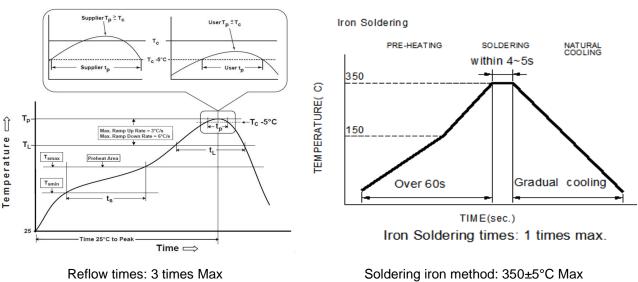


Figure 1: IR Soldering Reflow

Soldering iron method: 350±5°C Max Figure 2: Iron soldering temperature profiles

Table (1.1) Reflow Profiles

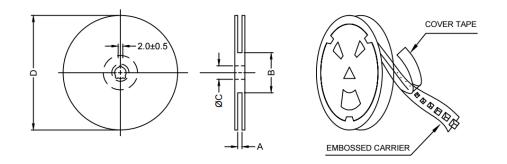
Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t _s) from (T_{smin} to T_{smax})	60-120seconds
Ramp-up rate (T∟to T _P)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t∟) maintained above T∟	60-150 seconds
Classification temperature (T _c)	See Table (1.2)
Time (t_p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (T _p to T _L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

 $\ensuremath{\text{Tp}}$: maximum peak package body temperature, $\ensuremath{\text{Tc}}$: the classification temperature.

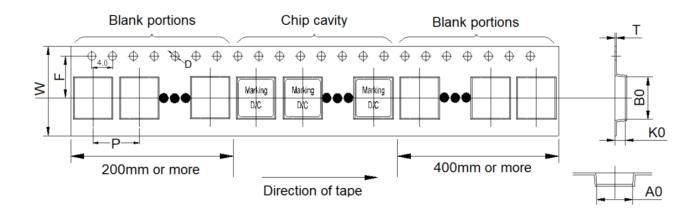
For user (customer) $\ensuremath{\text{Tp}}$ should be equal to or less than $\ensuremath{\text{Tc.}}$

*Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

· · ·	0		•	()
	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm ³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C


Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

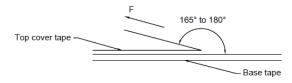
Reflow is referred to standard IPC/JEDEC J-STD-020E.


8. Packaging Information

8-1. Reel Dimension (Unit: mm)

Туре	А	В	С	D
13"x12mm	12.4+2.0/-0.0	100.0±2.0	13.0+0.5/-0.2	330.0

8-2. Tape Dimension (Unit: mm)


B0	A0	K0	Р	W	F	Т	D
4.40±0.10	4.40±0.10	2.30±0.10	8.00±0.10	12.00±0.30	5.50±0.10	0.35±0.10	1.50±0.10

8-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	3,000
Inner Box	6,000
Carton	24,000

8-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room	Room	Room atm Tearing]	Tape Size	8 r
Temp. (°C)	Humidity (%)	(hPa)	Speed (mm/min)		Tearing Off Force	10~
5~35	45~85	860~1060	300±10		(grams)	

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.
- 2. Transportation
 - (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
 - (b) Vacuum pick up is strongly recommended for individual components.
 - (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

