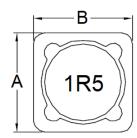
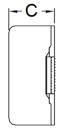
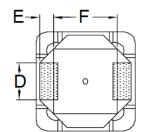
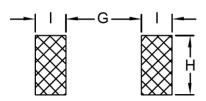
1. Part No. Expression

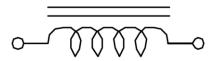

SDB 1205 1R5 Y Z F


- (a)
- (b)
- (c) (d) (e) (f)
- (d) Tolerance Code
- (b) Dimension Code


(a) Series Code

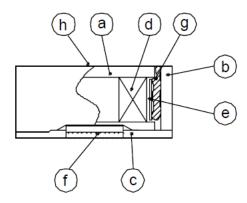

- (e) Special Code
- (c) Inductance Code
- (f) Packaging Code

2. Configuration & Dimensions (Unit: mm)


Recommended PCB Layout

Note: 1. The above PCB layout reference only.

2. Marking: Inductance Code


А	В	С	D	E
12.5±0.3	12.5±0.3	6.0 Max	5.0±0.2	2.2±0.2
F	G	Н	I	-
7.6±0.2	7.0 Ref	5.4 Ref	2.8 Ref	-

3. Schematic

4. Material List

- (a) DR Core
- (b) RI Core
- (c) Base
- (d) Wire
- (e) Tape
- (f) Terminal
- (g) Adhesive
- (h) Ink

5. General Specifications

- (a) Operating Temp.: -40°C to +125°C (including self-temperature rise)
- (b) All test data referenced to 25°C ambient.
- (c) Heat Rated Current (Irms) will cause the coil temperature rise ΔT of 40°C Max.
- (d) Saturation Current (Isat) will cause inductance L0 to drop 20% Max.
- (e) Rated Current: The lower value of Isat and Irms.
- (f) Resistance to solder heat: 260°C 10 secs
- (g) Storage Condition (Component in its packaging)

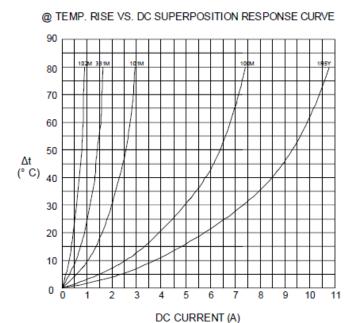
i) Temperature: -10°C to 40°Cii) Humidity: Less than 60% RH

6. Electrical Characteristics

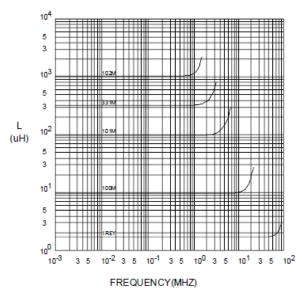
Part Number	Inductance (µH) @0A	Test Frequency	RDC (mΩ) Max	Irms (A) Max	Isat (A) Max
SDB12051R5YZF	1.5	1V/100KHz	12	7.50	8.00
SDB12052R2YZF	2.2	1V/100KHz	14	7.10	7.00
SDB12053R1YZF	3.1	1V/100KHz	17	6.60	6.00

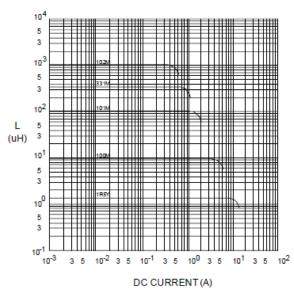
Note:

Tolerance Code: M=±20%, Y=±30%


Part Number	Inductance (µH) @0A	Test Frequency	RDC (mΩ) Max	Irms (A) Max	Isat (A) Max
SDB12054R4YZF	4.4	1V/100KHz	20	6.30	5.00
SDB12055R2YZF	5.2	1V/100KHz	21	5.90	4.40
SDB12057R5YZF	7.5	1V/100KHz	24	5.30	4.20
SDB1205100MZF	10.0	1V/1KHz	25	5.10	4.00
SDB1205120MZF	12.0	1V/1KHz	27	4.80	3.50
SDB1205150MZF	15.0	1V/1KHz	30	4.40	3.30
SDB1205180MZF	18.0	1V/1KHz	34	4.10	3.00
SDB1205220MZF	22.0	1V/1KHz	36	4.00	2.80
SDB1205270MZF	27.0	1V/1KHz	51	3.50	2.30
SDB1205330MZF	33.0	1V/1KHz	57	3.30	2.10
SDB1205390MZF	39.0	1V/1KHz	68	2.90	2.00
SDB1205470MZF	47.0	1V/1KHz	75	2.70	1.80
SDB1205560MZF	56.0	1V/1KHz	110	2.40	1.70
SDB1205680MZF	68.0	1V/1KHz	120	2.20	1.50
SDB1205820MZF	82.0	1V/1KHz	140	2.10	1.40
SDB1205101MZF	100.0	1V/1KHz	160	2.00	1.30
SDB1205121MZF	120.0	1V/1KHz	170	1.80	1.10
SDB1205151MZF	150.0	1V/1KHz	230	1.70	1.00
SDB1205181MZF	180.0	1V/1KHz	290	1.40	0.90
SDB1205221MZF	220.0	1V/1KHz	400	1.30	0.80
SDB1205271MZF	270.0	1V/1KHz	460	1.20	0.75
SDB1205331MZF	330.0	1V/1KHz	510	1.10	0.68
SDB1205391MZF	390.0	1V/1KHz	690	1.00	0.65
SDB1205471MZF	470.0	1V/1KHz	770	0.90	0.58
SDB1205561MZF	560.0	1V/1KHz	860	0.80	0.54
SDB1205681MZF	680.0	1V/1KHz	1200	0.80	0.48
SDB1205821MZF	820.0	1V/1KHz	1340	0.70	0.43
SDB1205102MZF	1000.0	1V/1KHz	1530	0.60	0.40

Note:


Tolerance Code: M=±20%, Y=±30%


7. Characteristics Curve

@ INDUCTANCE VS. FREQUENCY RESPONSE CURVE

@ INDUCTANCE VS. DC SUPERPOSITION RESPONSE CURV

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

ତ

TEM PERATURE(

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

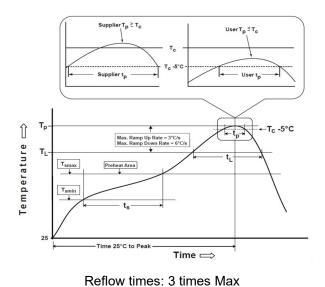
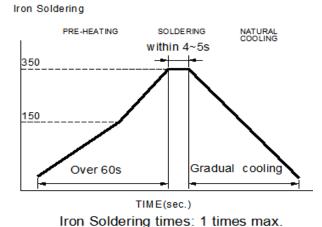



Figure 1: IR Soldering Reflow

non condening amoon t amoo max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

Table (1.1) Reflow Profiles

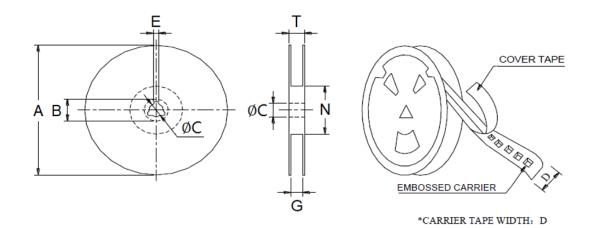
Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin}$ to $T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (T _c)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (T _p to T _L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

For user (customer) **Tp** should be equal to or less than **Tc**.

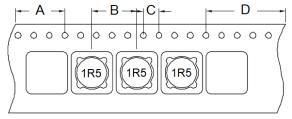
Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

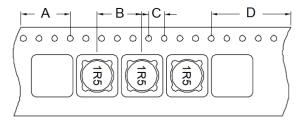

Reflow is referred to standard IPC/JEDEC J-STD-020E.

Superworld Electronics

^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

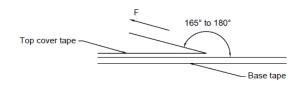
9-1. Reel Dimension (Unit: mm)



Туре	Α	В	С	D	E	G	N	Т
13"x24mm	330.0	21.0 Ref	13.0 Ref	24.0 Ref	2.0 Ref	26.0 Max	50.0 Min	30.4

9-2. Tape Dimension (Unit: mm)

Packaging Code: F


Packaging Code: G

А	В	С	D
200	12	4	400

9-3. Packaging Quantity & G.W & Size

INNER : REEL			О	UTER : CAR	TON
QTY(PCS)	G.W(gw)	STYLE	QTY(PCS)	G.W(Kg)	SIZE(cm)
600	1900	13-24	2400	11.1	38x36.5x21

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

