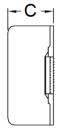
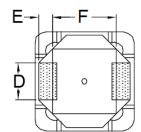
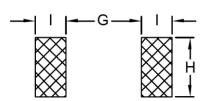
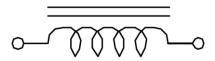

1. Part No. Expression


SDB 1207 R45 M Y F


- (a)
- (b)
- (c) (d) (e) (f)
- (a) Series Code

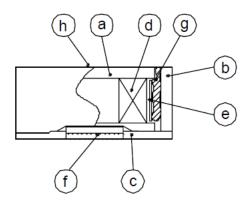

- (d) Tolerance Code
- (b) Dimension Code
- (e) Special Code
- (c) Inductance Code
- (f) Packaging Code

2. Configuration & Dimensions (Unit: mm)


Recommended PCB Layout

Note: 1. The above PCB layout reference only.

2. Marking: Inductance Code


А	В	С	D	E
12.5±0.3	12.5±0.3	8.0 Max	5.0±0.2	2.2±0.2
F	G	Н	I	-
7.6±0.2	7.0 Ref	5.4 Ref	2.8 Ref	-

3. Schematic

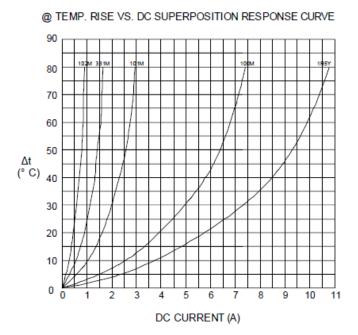
4. Material List

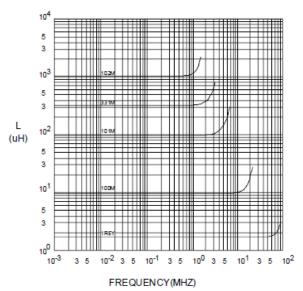
- (a) DR Core
- (b) RI Core
- (c) Base
- (d) Wire
- (e) Tape
- Terminal
- (q) Adhesive
- (h) Ink

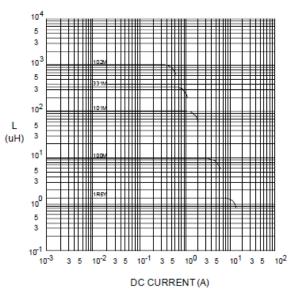
5. General Specifications

- (a) Operating Temp.: -40°C to +125°C (including self-temperature rise)
- (b) Storage Temp.: -40°C to +125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C.
- (e) Saturation Current (Isat) will cause inductance L0 to drop approximately 10%.
- (f) Rated Current: The lower value of Isat and Irms.
- (g) Storage Condition (Component in its packaging)
 - Temperature: Less than 40°C
 - ii) Humidity: Less than 60% RH

6. Electrical Characteristics


Part Number	Inductance (µH) @0A ±20%	Test Frequency	RDC (mΩ) Max	Irms (A)	lsat (A)
SDB1207R45MYF	0.45	0.25V/100KHz	3.2	30.00	14.00
SDB1207R82MYF	0.82	0.25V/100KHz	5.0	22.00	12.00
SDB12071R5MYF	1.50	0.25V/100KHz	5.9	18.00	11.00
SDB12072R2MYF	2.20	0.25V/100KHz	7.0	15.00	10.00
SDB12073R3MYF	3.30	0.25V/100KHz	7.9	11.00	9.00
SDB12074R7MYF	4.70	0.25V/100KHz	9.5	10.00	8.50
SDB12075R6MYF	5.60	0.25V/100KHz	11.5	9.00	8.00
SDB12076R8MYF	6.80	0.25V/100KHz	12.5	8.00	7.50
SDB12078R2MYF	8.20	0.25V/100KHz	19.5	7.30	6.50
SDB1207100MYF	10.0	0.25V/10KHz	20.1	6.80	6.00
SDB1207120MYF	12.0	0.25V/10KHz	23.2	6.30	5.60
SDB1207150MYF	15.0	0.25V/10KHz	31.9	5.80	5.00
SDB1207180MYF	18.0	0.25V/10KHz	35.6	5.00	4.60
SDB1207220MYF	22.0	0.25V/10KHz	41.0	4.50	4.30
SDB1207270MYF	27.0	0.25V/10KHz	52.9	4.00	4.00
SDB1207330MYF	33.0	0.25V/10KHz	59.4	3.70	3.50
SDB1207390MYF	39.0	0.25V/10KHz	64.8	3.40	3.30
SDB1207470MYF	47.0	0.25V/10KHz	90.0	3.20	3.00
SDB1207560MYF	56.0	0.25V/10KHz	115	3.00	2.65
SDB1207680MYF	68.0	0.25V/10KHz	134	2.70	2.35
SDB1207820MYF	82.0	0.25V/10KHz	146	2.40	2.10
SDB1207101MYF	100	0.25V/10KHz	156	2.20	2.00
SDB1207121MYF	120	0.25V/10KHz	221	2.00	1.90
SDB1207151MYF	150	0.25V/10KHz	246	1.80	1.70
SDB1207181MYF	180	0.25V/10KHz	324	1.60	1.50
SDB1207221MYF	220	0.25V/10KHz	367	1.50	1.40


Part Number	Inductance (µH) @0A ±20%	Test Frequency	RDC (mΩ) Max	Irms (A)	Isat (A)
SDB1207271MYF	270	0.25V/10KHz	425	1.30	1.30
SDB1207331MYF	330	0.25V/10KHz	560	1.20	1.10
SDB1207391MYF	390	0.25V/10KHz	761	1.10	1.00
SDB1207471MYF	470	0.25V/10KHz	855	1.00	0.95
SDB1207561MYF	560	0.25V/10KHz	936	0.95	0.90
SDB1207681MYF	680	0.25V/10KHz	1296	0.85	0.80
SDB1207821MYF	820	0.25V/10KHz	1404	0.80	0.70
SDB1207102MYF	1000	0.25V/10KHz	1620	0.70	0.60


7. Characteristics Curve

@ INDUCTANCE VS. FREQUENCY RESPONSE CURVE

@ INDUCTANCE VS. DC SUPERPOSITION RESPONSE CURV

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

ତ

TEM PERATURE(

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

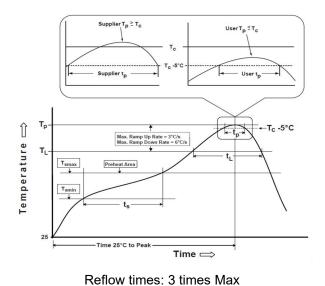
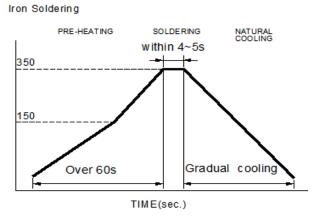



Figure 1: IR Soldering Reflow

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

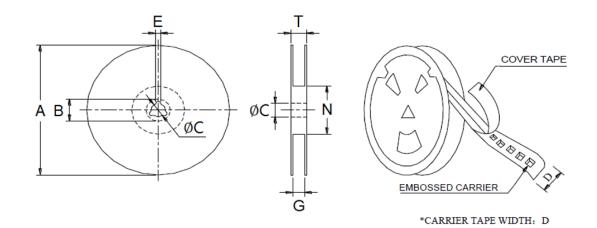
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin}$ to $T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (Tc)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate $(T_p \text{ to } T_L)$	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

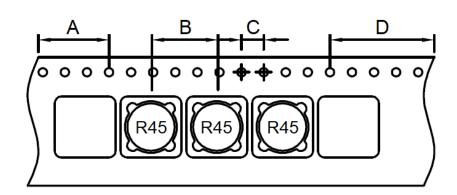
For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)


	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

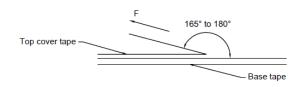
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре	Α	В	С	D	E	G	N	Т
13"x24mm	330.0	21.0 Ref	13.0 Ref	24.0 Ref	2.0 Ref	26.0 Max	100.0 Min	30.4

9-2. Tape Dimension (Unit: mm)


А	В	С	D
200	16	4	400

9-3. Packaging Quantity & G.W & Size

INNER : REEL		OUTER : CARTON		
QTY(PCS)	G.W(gw)	QTY(PCS)	G.W(Kg)	SIZE(cm)
400	2,100	1,600	11.9	36x35.5x14.3

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

