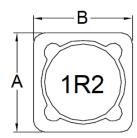
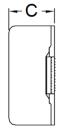
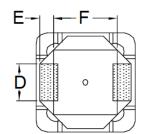
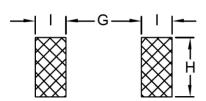
1. Part No. Expression

SDB12071R2YZF

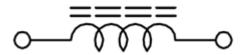

- (a)
- (b)
- (c) (d) (e) (f)
- (a) Series Code


- (d) Tolerance Code
- (b) Dimension Code


(e) Special Code

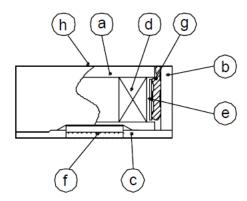

- (c) Inductance Code
- (f) Packaging Code

2. Configuration & Dimensions (Unit: mm)


Recommended PCB Layout

Note: 1. The above PCB layout reference only.

2. Marking: Inductance Code


А	В	С	D	E
12.5±0.3	12.5±0.3	8.0 Max	5.0±0.2	2.2±0.2
F	G	Н	I	-
7.6±0.2	7.0 Ref	5.4 Ref	2.8 Ref	-

3. Schematic

4. Material List

- (a) DR Core
- (b) RI Core
- (c) Base
- (d) Wire
- (e) Tape
- (f) Terminal
- (g) Adhesive
- (h) Ink

5. General Specifications

- (a) Operating Temp.: -40°C to +125°C (including self-temperature rise)
- (b) Storage Temp.: -40°C to +125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise ΔT of 40°C Max.
- (e) Saturation Current (Isat) will cause inductance L0 to drop 20% Max.
- (f) Rated Current: The lower value of Isat and Irms.
- (g) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°C
 - ii) Humidity: Less than 60% RH

6. Electrical Characteristics

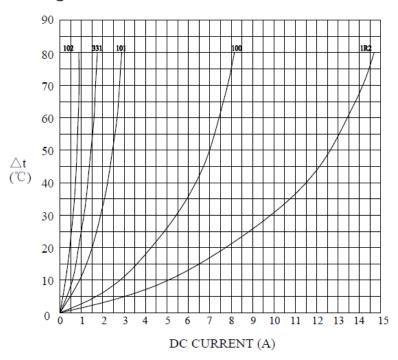
Part Number	Inductance (µH) @0A	Test Frequency	RDC (mΩ) Max	Isat (A) Max	Irms (A) Max
SDB12071R2YZF	1.2	1V/100KHz	7.0	9.80	8.90
SDB12072R7YZF	2.7	1V/100KHz	11.5	8.00	7.20
SDB12073R9YZF	3.9	1V/100KHz	13.5	7.50	6.90
SDB12074R7YZF	4.7	1V/100KHz	15.8	6.80	6.60
SDB12075R6YZF	5.6	1V/100KHz	17.6	6.60	6.30
SDB12077R6YZF	7.6	1V/100KHz	20.0	5.90	6.00
SDB1207100MZF	10	1V/1KHz	21.6	5.40	5.20
SDB1207120MZF	12	1V/1KHz	24.3	4.90	5.20
SDB1207150MZF	15	1V/1KHz	27.0	4.50	4.90
SDB1207180MZF	18	1V/1KHz	39.2	3.90	4.50
SDB1207220MZF	22	1V/1KHz	43.2	3.60	4.20
SDB1207270MZF	27	1V/1KHz	45.9	3.40	4.00
SDB1207330MZF	33	1V/1KHz	64.8	3.00	3.40
SDB1207390MZF	39	1V/1KHz	72.9	2.75	3.20
SDB1207470MZF	47	1V/1KHz	100	2.50	2.60
SDB1207560LZF	56	1V/1KHz	110	2.35	2.50
SDB1207680LZF	68	1V/1KHz	140	2.10	2.30
SDB1207820LZF	82	1V/1KHz	160	1.95	2.00
SDB1207101LZF	100	1V/1KHz	220	1.70	1.90
SDB1207121LZF	120	1V/1KHz	250	1.60	1.80
SDB1207151LZF	150	1V/1KHz	280	1.42	1.70
SDB1207181KZF	180	1V/1KHz	350	1.30	1.40
SDB1207221KZF	220	1V/1KHz	390	1.16	1.30
SDB1207271KZF	270	1V/1KHz	560	1.06	1.20
SDB1207331KZF	330	1V/1KHz	640	0.95	1.10

Note:

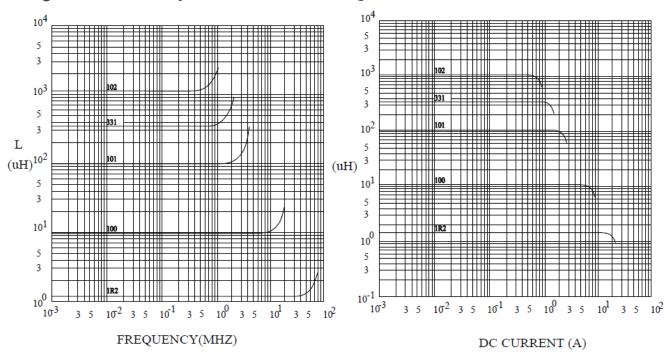
Tolerance Code: K=±10%, L=±15%, M=±20%, Y=±30%

Part Number	Inductance (µH) @0A	Test Frequency	RDC (mΩ) Max	Isat (A) Max	Irms (A) Max
SDB1207391KZF	390	1V/1KHz	700	0.88	1.10
SDB1207471KZF	470	1V/1KHz	980	0.79	0.90
SDB1207561KZF	560	1V/1KHz	1070	0.73	0.90
SDB1207681KZF	680	1V/1KHz	1460	0.67	0.80
SDB1207821KZF	820	1V/1KHz	1640	0.60	0.60
SDB1207102KZF	1000	1V/1KHz	1820	0.55	0.60

Note:


Tolerance Code: K=±10%, L=±15%, M=±20%, Y=±30%

 ${\color{red} {NOTE:}} \ Specifications \ subject \ to \ change \ without \ notice. \ Please \ check \ our \ website \ for \ latest \ information.$


7. Characteristics Curve

@ INDUCTANCE VS. FREQUENCY RESPONSE CURVE

@ INDUCTANCE VS. DC SUPERPOSITION RESPONSE CURVE

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

ତ

TEM PERATURE(

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

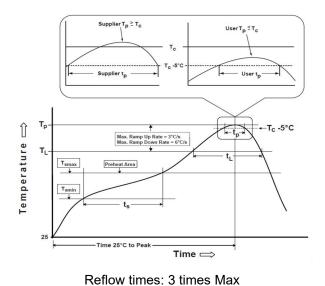
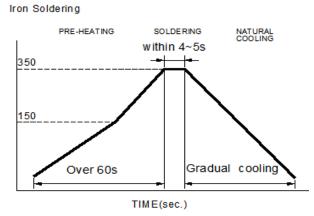



Figure 1: IR Soldering Reflow

Iron Soldering times: 1 times max.

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

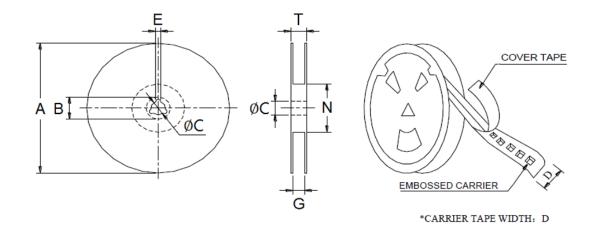
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin}$ to $T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (T _c)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (T _p to T _L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

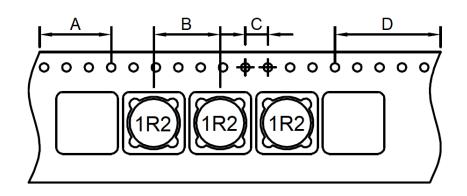
For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)


	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

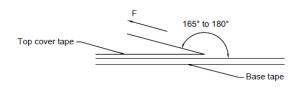
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре	Α	В	O	D	E	G	N	Т
13"x24mm	330.0	21.0 Ref	13.0 Ref	24.0	2.0 Ref	26.0 Max	100.0 Min	30.4

9-2. Tape Dimension (Unit: mm)


Α	В	С	D
200	16	4	400

9-3. Packaging Quantity & G.W & Size

INNER	: REEL	C	OUTER : CARTON	
QTY(PCS)	G.W(gw)	QTY(PCS)	G.W(Kg)	SIZE(cm)
400	2,100	1,600	11.9	36x35.5x14.3

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

