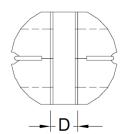
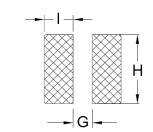
1. Part No. Expression

PDC 1005 100 M Z F

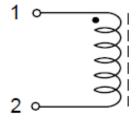
- (a)
- (b)
- (
- (c) (d) (e) (f)
- (a) Series Code

- (d) Tolerance Code
- (b) Dimension Code


(e) Special Code

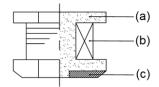

- (c) Inductance Code
- (f) Packaging Code

2. Configuration & Dimensions (Unit: mm)


Recommended PCB Layout

Note: 1. The above PCB layout reference only.

2. Marking: Inductance Code


Α	В	С	D	G	Н	I
9.00±0.40	10.00±0.40	5.40±0.40	3.00±0.30	2.50 Ref	9.50 Ref	3.75 Ref

3. Schematic

4. Material List

- (a) Core
- (b) Wire
- (c) Electrode

5. General Specifications

(a) Operating Temp.: -40°C to +125°C (including self-temperature rise)

(b) Storage Temp.: -40°C to +125°C (on board)

(c) All test data referenced to 25°C ambient.

(d) Heat Rated Current (Irms) will cause the coil temperature rise ΔT of 40°C Max.

(e) Saturation Current (Isat) will cause inductance L0 to drop approximately 10%.

(f) Rated Current: The lower value of Isat and Irms.

(g) Storage Condition (Component in its packaging)

i) Temperature: Less than 60°C

ii) Humidity: Less than 90% RH

6. Electrical Characteristics

Part Number	Inductance (uH) @0A	Test Frequency	DCR (mΩ) Max	IDC (mA)	Marking
PDC1005100MZF	10	1V/2.52MHz	60	2600	100
PDC1005120MZF	12	1V/2.52MHz	70	2450	120
PDC1005150MZF	15	1V/2.52MHz	80	2270	150
PDC1005180MZF	18	1V/2.52MHz	90	2150	180
PDC1005220MZF	22	1V/2.52MHz	100	1950	220
PDC1005270MZF	27	1V/2.52MHz	110	1760	270
PDC1005330MZF	33	1V/2.52MHz	120	1500	330
PDC1005390MZF	39	1V/2.52MHz	140	1370	390
PDC1005470KZF	47	1V/2.52MHz	170	1280	470
PDC1005560KZF	56	1V/2.52MHz	190	1170	560
PDC1005680KZF	68	1V/2.52MHz	220	1110	680
PDC1005820KZF	82	1V/2.52MHz	250	1000	820
PDC1005101KZF	100	1V/1KHz	350	970	101
PDC1005121KZF	120	1V/1KHz	400	890	121
PDC1005151KZF	150	1V/1KHz	470	780	151
PDC1005181KZF	180	1V/1KHz	630	720	181
PDC1005221KZF	220	1V/1KHz	730	660	221
PDC1005271KZF	270	1V/1KHz	970	570	271
PDC1005331KZF	330	1V/1KHz	1150	520	331
PDC1005391KZF	390	1V/1KHz	1300	480	391
PDC1005471KZF	470	1V/1KHz	1480	420	471
PDC1005561KZF	560	1V/1KHz	1900	330	561
PDC1005681KZF	680	1V/1KHz	2250	280	681
PDC1005821KZF	820	1V/1KHz	2550	240	821

Note:

Tolerance Code: K=±10%, M=±20%

7. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

7-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

7-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

ତ

TEM PERATURE(

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

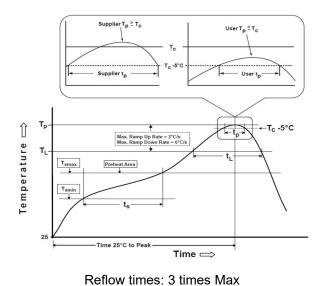
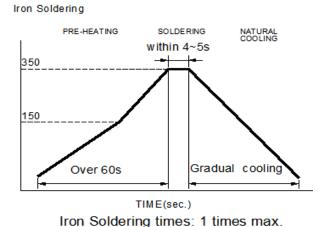



Figure 1: IR Soldering Reflow

non condoming amos. I amos max

Soldering iron method: 350±5°C Max

Figure 2: Iron soldering temperature profiles

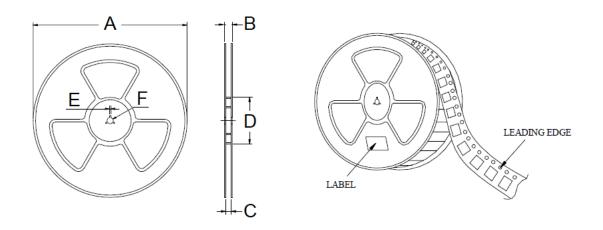
Table (1.1) Reflow Profiles

Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t_s) from $(T_{smin}$ to $T_{smax})$	60-120seconds
Ramp-up rate (T _L to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t _L) maintained above T _L	60-150 seconds
Classification temperature (T _c)	See Table (1.2)
Time (t _p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate $(T_p \text{ to } T_L)$	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

Tp: maximum peak package body temperature, **Tc**: the classification temperature.

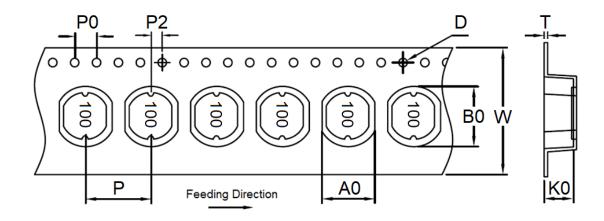
For user (customer) **Tp** should be equal to or less than **Tc**.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)


	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E.

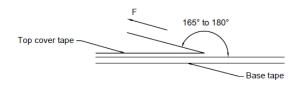
^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.


8. Packaging Information

8-1. Reel Dimension (Unit: mm)

Тур	е	А	В	С	D	Е	F
13"x	24	330.00	100.00	13.00	12.50	2.30	R6.75

8-2. Tape Dimension (Unit: mm)


W	A0	В0	K0	Р
24.0+0.3/-0.1	9.4±0.1	10.4±0.1	6.2±0.1	12.0±0.1
D	P0	P2	Т	-
1.5+0.1/-0.0	4.0±0.1	2.0±0.1	0.4	-

8-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	1,000	
Outside Carton	5,000	

8-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed (mm/min)
5~35	45~85	860~1060	300±10

Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Tearing Off Force (grams)	10~100	10~130	10~150

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 6 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.

2. Transportation

- (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- (b) Vacuum pick up is strongly recommended for individual components.
- (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

